Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics

7 months ago 17

Data availability

scRNA-seq and scATAC-seq data generated in this study are deposited in the National Center for Biotechnology Information Gene Expression Omnibus under accession GSE199565. Processed Seurat R objects are available here. Source data are provided with this paper.

Code availability

All analyses were done with custom R scripts and are available upon request using standard R packages. No new algorithms were developed during this study.

References

  1. Kaech, S. M. et al. Selective expression of the interleukin-7 receptor identifies effector CD8+ T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of t-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin, M. D. & Badovinac, V. P. Defining memory CD8+ T cell. Front. Immunol. 9, 2692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chung, H. K., McDonald, B. & Kaech, S. M. The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates. J. Exp. Med. 218, e20201730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8+ T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Utzschneider, D. T. et al. T cell factor 1-expressing memory like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8+ T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishna, S. et al. Stem-like CD8+ T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beltra, J. C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet 48, 1193–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giles, J. R. et al. Human epigenetic and transcriptional T cell differentiation atlas for identifying functional T cell-specific enhancers. Immunity 55, 557–574.e557 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8+ T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Omilusik, K. D. et al. Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J. Exp. Med. 212, 2027–2039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dominguez, C. X. et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J. Exp. Med 212, 2041–2056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guan, T. et al. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. J. Exp. Med 215, 1153–1168 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8+ T cell-fate decision. Immunity 51, 840–855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  33. Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Montfoort, N. et al. NKG2A blockade potentiates CD8+ T cell immunity induced by cancer vaccines. Cell 175, 1744–1755 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Raulet, D. H., Marcus, A. & Coscoy, L. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells. Immunol. Rev. 280, 93–101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med 25, 454–461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McMahon, C. W. et al. Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8+ T cells. J. Immunol. 169, 1444–1452 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. McMahon, C. W. & Raulet, D. H. Expression and function of NK cell receptors in CD8+ T cells. Curr. Opin. Immunol. 13, 465–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nüssing, S. et al. Efficient CRISPR–Cas9 gene editing in uncultured naive mouse T cells for in vivo studies. J. Immunol. 204, 2308–2315 (2020).

    Article  PubMed  Google Scholar 

  41. Will, B. et al. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat. Immunol. 14, 437–445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, C. & Qin, D. Role of Lef1 in sustaining self-renewal in mouse embryonic stem cells. J. Genet. Genomics 37, 441–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Yuniati, L., Scheijen, B., van der Meer, L. T. & van Leeuwen, F. N. Tumor suppressors BTG1 and BTG2: beyond growth control. J. Cell. Physiol. 234, 5379–5389 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Venezia, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2, e301 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med 212, 1125–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Araki, K. et al. Translation is actively regulated during the differentiation of CD8+ effector T cells. Nat. Immunol. 18, 1046–1057 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fellmann, C. et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Kurachi, M. et al. Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nat. Protoc. 12, 1980–1998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8+ T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8+ T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004-9 (2004).

    Article  PubMed  Google Scholar 

  55. Yao, C. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 22, 370–380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the laboratory of E.J.W. This work was supported by T32 CA009140 and a Cancer Research Institute-Mark Foundation Fellowship (to J.G.), by the Parker Institute for Cancer Immunotherapy and Stand Up to Cancer and National Institutes of Health (NIH) grants AI155577, AI149680, AI108545, AI082630, DK127768 and CA210944 (to E.J.W.). Work in the Wherry laboratory is supported by the Parker Institute for Cancer Immunotherapy. S.F.N. was supported by an Australia NHMRC C.J. Martin Fellowship (GNT1111469) and the Mark Foundation Momentum Fellowship. O.K. was supported by an NIAID F30 fellowship (F30AI129263). D.M. was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. J.E.W. was supported by a PICI Scholar award. Y.J.H. was supported by a National Science Foundation graduate research fellowship. A.C.H. was supported by NIH grant K08-CA230157, the Damon Runyon Clinical Investigator Award, Doris Duke Clinical Scientist Development Award, W. W. Smith Charitable Trust Award, the Tara Miller Foundation and P50 CA174523. The melanoma clinical trial was supported by SPORE grant P50CA261608.

Author information

Author notes

  1. Ryan Staupe

    Present address: Infectious Disease & Vaccines, MRL, Merck & Co. Inc., West Point, PA, USA

  2. Mohamed S. Abdel-Hakeem

    Present address: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA

  3. Patrick K. Yan

    Present address: Immunology Graduate Program, Stanford University, Stanford, CA, USA

Authors and Affiliations

  1. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA

    Josephine R. Giles, Shin Foong Ngiow, Sasikanth Manne, Amy E. Baxter, Omar Khan, Ping Wang, Ryan Staupe, Mohamed S. Abdel-Hakeem, Hua Huang, Divij Mathew, Mark M. Painter, Jennifer E. Wu, Yinghui Jane Huang, Rishi R. Goel, Patrick K. Yan & E. John Wherry

  2. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Josephine R. Giles, Shin Foong Ngiow, Sasikanth Manne, Amy E. Baxter, Omar Khan, Ping Wang, Mohamed S. Abdel-Hakeem, Hua Huang, Divij Mathew, Mark M. Painter, Jennifer E. Wu, Yinghui Jane Huang, Rishi R. Goel, Alexander C. Huang & E. John Wherry

  3. Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Josephine R. Giles, Shin Foong Ngiow, Jennifer E. Wu, Alexander C. Huang & E. John Wherry

  4. Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA

    Ping Wang & Alexander C. Huang

  5. Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA

    Hua Huang

  6. Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA

    Giorgos C. Karakousis & Xiaowei Xu

  7. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Tara C. Mitchell

  8. Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Alexander C. Huang

Contributions

J.G., O.K. and E.J.W. conceived and designed the experiments. J.G., O.K. and R.S. performed FACS and prepared sequencing libraries. J.G. analyzed data with help from S.F.N., S.M. and H.H. P.W. prepared retroviruses. M.S.A. provided long-term Arm-infected mice. A.E.B., S.F.N., D.M., M.M.P., R.R.G., J.E.W. and Y.J.H. helped with experiments. For the melanoma TIL samples, A.C.H. and T.C.M. designed the trial; A.C.H., T.C.M., X.X. and G.C.K. implemented the clinical trial at Penn; T.C.M. was principal investigator of the clinical trial; and P.K.Y. performed flow cytometry on TIL samples. J.G. and E.J.W. wrote the manuscript.

Corresponding author

Correspondence to E. John Wherry.

Ethics declarations

Competing interests

E.J.W. is a member of the Parker Institute for Cancer Immunotherapy, which supported the study. E.J.W. is an advisor for Danger Bio, Marengo, Janssen, Pluto Immunotherapeutics, Related Sciences, Rubius Therapeutics, Synthekine and Surface Oncology. E.J.W. is a founder of Surface Oncology, Danger Bio and Arsenal Biosciences. E.J.W. has a patent on the PD-1 pathway. O.K. holds equity in Arsenal Biosciences and is an employee of Orange Grove Bio. A.C.H. is a consultant for Immunai and receives funding from BMS. X.X. is scientific cofounder of CureBiotech and Exio Biosciences. T.M. is on the scientific advisory board for Merck, BMS, OncoSec, GigaGen and Instil Bio. G.C.K. is on the scientific advisory board for Merck and was the principal investigator of an investigator-initiated trial sponsored by Merck.

Peer review

Peer review information

Nature Immunology thanks Fotini Gounari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: L. A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giles, J.R., Ngiow, S.F., Manne, S. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat Immunol (2022). https://doi.org/10.1038/s41590-022-01338-4

Download citation

  • Received: 20 March 2022

  • Accepted: 13 September 2022

  • Published: 21 October 2022

  • DOI: https://doi.org/10.1038/s41590-022-01338-4

Read Entire Article
Анализ сайта rss.skrepka.top Анализ сайта Анализ сайта page rank checker Счетчик ИКС Наш сайт в каталоге manyweb.ru доска объявлений Поиск в RSS новостях и блогах Сервер радиолюбителей России - схемы, документация,
 соревнования, дипломы, программы, форумы и многое другое! Каталог сайтов на http://www.delo.net.ua/ DMCA.com Protection Status